Machine Learning in Ranchi

Machine Learning in Ranchi

What is machine learning?

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy.

IBM has a rich history with machine learning. One of its own, Arthur Samuel, is credited for coining the term, “machine learning” with his research (PDF, 481 KB) (link resides outside IBM) around the game of checkers. Robert Nealey, the self-proclaimed checkers master, played the game on an IBM 7094 computer in 1962, and he lost to the computer. Compared to what can be done today, this feat almost seems trivial, but it’s considered a major milestone within the field of artificial intelligence. Over the next couple of decades, the technological developments around storage and processing power will enable some innovative products that we know and love today, such as Netflix’s recommendation engine or self-driving cars.

Machine learning is an important component of the growing field of data science. Through the use of statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. These insights subsequently drive decision making within applications and businesses, ideally impacting key growth metrics. As big data continues to expand and grow, the market demand for data scientists will increase, requiring them to assist in the identification of the most relevant business questions and subsequently the data to answer them.

How machine learning works

  1. A Decision Process: In general, machine learning algorithms are used to make a prediction or classification. Based on some input data, which can be labelled or unlabeled, your algorithm will produce an estimate about a pattern in the data.
  2. An Error Function: An error function serves to evaluate the prediction of the model. If there are known examples, an error function can make a comparison to assess the accuracy of the model.
  3. An Model Optimization Process: If the model can fit better to the data points in the training set, then weights are adjusted to reduce the discrepancy between the known example and the model estimate. The algorithm will repeat this evaluate and optimize process, updating weights autonomously until a threshold of accuracy has been met.  

Machine learning methods

Machine learning classifiers fall into three primary categories.

Supervised machine learning            

Supervised learning, also known as supervised machine learning, is defined by its use of labeled datasets to train algorithms that to classify data or predict outcomes accurately. As input data is fed into the model, it adjusts its weights until the model has been fitted appropriately. This occurs as part of the cross validation process to ensure that the model avoids overfitting or underfitting. Supervised learning helps organizations solve for a variety of real-world problems at scale, such as classifying spam in a separate folder from your inbox. Some methods used in supervised learning include neural networks, naïve bayes, linear regression, logistic regression, random forest, support vector machine (SVM), and more.

Unsupervised machine learning

Unsupervised learning, also known as unsupervised machine learning, uses machine learning algorithms to analyze and cluster unlabeled datasets. These algorithms discover hidden patterns or data groupings without the need for human intervention. Its ability to discover similarities and differences in information make it the ideal solution for exploratory data analysis, cross-selling strategies, customer segmentation, image and pattern recognition. It’s also used to reduce the number of features in a model through the process of dimensionality reduction; principal component analysis (PCA) and singular value decomposition (SVD) are two common approaches for this. Other algorithms used in unsupervised learning include neural networks, k-means clustering, probabilistic clustering methods, and more.

Semi-supervised learning 

Semi-supervised learning offers a happy medium between supervised and unsupervised learning. During training, it uses a smaller labeled data set to guide classification and feature extraction from a larger, unlabeled data set. Semi-supervised learning can solve the problem of having not enough labeled data (or not being able to afford to label enough data) to train a supervised learning algorithm. 

Leave a Comment

Your email address will not be published.